Multiple Choice Questions: Circle the single best answer. No penalty for guessing.

1. Which is the atomic symbol for the atom which has 13 more protons, 12 more electrons and 16 more neutrons than 23Na$^+$? (3 points)
 A) 52Cr$^{2+}$ B) 53Mn$^{2+}$ C) 51V$^{2+}$ D) 51Cr$^+$ E) 52Co$^{2-}$

2. What is the molecular geometry of a molecule with 4 pairs valence electrons about the central atom, of which 2 pairs are lone pairs of electrons (i.e. H$_2$S)? (3 points)
 A) trigonal B) tetrahedral C) linear D) bent E) square planar

3. Which of the following types of molecular orbitals for a diatomic system would have the greatest electron density along the bond axis and between the atoms? (3 points)
 A) σ B) σ^* C) π^* D) π E) δ

4. How many different types of 4d orbitals are there? (3 points)
 A) 3 B) 4 C) 5 D) 6 E) 7

5. What is the electron configuration for elemental oxygen, O? (3 points)
 A) 1s22p6 B) 1s22s23s2 C) 2s22p4 D) 2s22p6 E) 1s22s22p4

6. Which of the following atoms or ions has the greatest first ionization energy? (3 points)
 A) Fe B) Al C) F D) Na E) Rh

7. Draw the Lewis dot structures for Si(OH)$_4$ and XeF$_2$. (12 points)
8. Write the formula or name of the following ionic compounds and indicate the solubility.
(16 points)

LiOH
AgNO₂
nickel (II) acetate
hydrobromic acid

9. Explain why a NaF solid lattice melts at a temperature so much higher (993 °C) than a lattice of Ne atoms (–248 °C)? (8 points)

10. Draw the Lewis dot structure for PO₄³⁻ (including resonance structures if any exist). Indicate the molecular and electron pair geometries for each as well as formal charges. (10 points)

11. List the members of the following series in order of increasing bond length and explain why the trend is predicted: N₂⁺, N₂, N₂⁻. (8 points)
12. Explain why He (helium) atoms are smaller than both H (hydrogen) and Ne (neon) atoms using electron configuration and charge arguments. (8 points)

13. Calculate the enthaply of combustion (reaction with O_2 to make CO_2 and H_2O) for C_2H_6, given the following bond dissociation energies: $C–H$ 413; $C=O$ 799; $O–H$ 463 kJ/mol. (10 points, remember to right a balanced equation first.)

14. Balance the following equation and write out a final net ionic equation. Calculate the mass of solid precipitate formed when 0.2 moles of K_2S in solution reacts with 0.1 moles of $CaSO_4$ in solution. (10 points)

$$___ K_2S (aq) + ___ CaSO_4 (aq) \rightarrow _________ + _______$$

15. BONUS QUESTION: Explain why a π orbit constructed with two 2p atomic orbits is higher in energy than a σ orbit constructed from two 2s atomic orbits. (5 bonus points)