1. Describe the Hückel approximations used in molecular orbital calculations and apply these to derive a determinant for the electronic energy in C\textsubscript{12}H\textsubscript{8}. Note where improvements could be made in this simple theory by changing terms in the determinant if the molecule was C\textsubscript{10}N\textsubscript{2}H\textsubscript{6}. Describe what each integral (α, β) used in this determinant indicates in both words and symbols. (25 points, note that these molecules are fully conjugated, planar and sp2 hybridized at each atom. Be sure to number the atoms relative to secular determinant columns.)

2. Classify the point group of the following molecules. (A) B\textsubscript{2}H\textsubscript{6} (note 2 hydrogen atoms are bridging) (B) Staggered-C\textsubscript{2}H\textsubscript{8} (C) HCN (D) Fe(C\textsubscript{5}H\textsubscript{5})Cl (E) 1-chloro-2-bromobenzene. In each case indicate the allowed symmetry operations. (15 points)

3. A ClO\textsubscript{3} molecule is of the point group C\textsubscript{2v}, and has a ground electronic state of symmetry B\textsubscript{1}. When a molecule is trapped in a solid (to prevent motion) and light of y polarization falls on it (relative to the molecular axis frame) the molecule is excited to an upper electronic state. What symmetry types would be allowed for the final state (test all symmetry species)? (10 points)

4. Construct a complete molecular orbit wavefunction description of the π bonding in CO\textsubscript{3}2−. Note that you should demonstrate how you arrive at each of the π orbits from the four 2p\textsubscript{z} orbits on the atoms (you need not expand p\textsubscript{z} functions). Assume the molecule is planar and that each is sp2 hybridized. Be sure to include proper irreducible representations for each orbit. (15 points)

5. Using Einstein extinction coefficients, explain why a population difference between energy levels is required for a net absorption of resonant photon energy. A laser requires the populations of two energy levels be inverted. Explain what happen when the resonant photon density increases when the population of a pair of energy levels is exchanged (N\textsubscript{L} → N\textsubscript{U} and N\textsubscript{U} → N\textsubscript{L}). (8 points)

6. Describe in a short answer what is required of a molecule to show pure rotational transitions. Which of the following molecules may show a pure microwave rotational spectrum: (A) H\textsubscript{2} (B) HCl (C) CH\textsubscript{4} (D) CH\textsubscript{2}Cl\textsubscript{2} (E) H\textsubscript{2}O (F) NH\textsubscript{3}? (12 points)

7. For 65Cu79Br the J=13–14, 14–15 and 15–16 pure rotational transitions occurred at 84 421.34, 90 449.25, and 96 476.72 MHz. Calculate the rotational constant (B) in cm−1 and the bond length of CuBr. (I = μ r2, μ = m\textsubscript{1} m\textsubscript{2} / (m\textsubscript{1} + m\textsubscript{2}), B = h / 8 \pi2 c I, E = h c B J (J + 1), h = 6.626x10−34 J s, c = 2.99x108 m/s, 1 amu = 1.6605x10−27 kg, 10 points)